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Moving Boundaries in 2-D and 3-D TLM Simulations
Realized by Recursive Formulas

Ulf Mueller, Adalbert Beyer, Senior Member, IEEE, and Wolfgang J. R. Hoefer, Fellow, IEEE

Abstract—In this paper a novel technique for arbitrary
boundary positioning in TLM networks will be described. This
capability removes the restriction that dimensions of TLM
models can only be integer multiples of the mesh parameter and
allows superior boundary resolution. Since the position of
boundaries can be continuously varied even during a simula-
tion, this feature can model moving boundaries for time do-
main optimization and phenomena such as the Doppler effect.

I. INTRODUCTION

HE ACCURATE modeling of waveguide compo-

nents, discontinuities and junctions requires a preci-
sion in the positioning of boundaries that is identical to,
or better than the manufacturing tolerances. In traditional
TLM models of electromagnetic structures, boundaries
can only be placed either across the nodes or halfway be-
tween nodes. Unless all dimensions of the structure are
integer multiples of Al/2 the mesh parameter would have
to be very small indeed, leading to unacceptable compu-
tational requirements. Similar considerations apply when
curved boundaries with very small radii of curvature must
be modeled. It is therefore important to provide for arbi-
trary ‘positioning of walls. A method for changing the po-
sition of boundaries in 2-D TLM through modification of
the impulse scattering matrix of boundary nodes has been
described already in 1973 by Johns [1] who, at the time;
thought that the advantage of this procedure over stepped
contour (‘‘Manhattan-style’”) modeling was too small to
warrant the additional complexity of the algorithm. How-
ever, this is not true when analyzing narrowband wave-
guide components such as filters.

II. THEORETICAL BACKGROUND
2.1 Boundary Extension by Reactive Elements

In Johns’ concept of arbitrary wall positioning in 2-D
TLM [1] a boundary branch which has a length different
from Al/2 is simply replaced by an equivalent branch of
length Al/2 having an identical input admittance. This
ensures synchronism but requires a different characteristic
admittance for the boundary branch and hence, a modifi-
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cation of the impulse scattering matrix of the boundary
node.

The method proposed in this paper leaves the impulse
scattering matrix intact, but replaces the single boundary
reflection coeflicient by a recursive reflection algorithm
which functions as follows.

Assume that we wish to position a reflecting boundary
(electric or magnetic wall) at a distance Al/2 + [ from
the node as shown in Fig. 1(a)-(b), where [ is an arbitrary
shift in the boundary position beyond the standard dis-
tance Al /2 for which the node scattering matrix has to be
defined. In fact, this amounts to terminating the regular
Al/2 long boundary branch in a short- or open-circuited
transmission line section with the normalized input reac-
tance

jwl
= J;— = jtan B/  for an electric wall, and

0

1 1
"~ jwCZ, jtan Bl

z, = jx,

Z; = Jx; for a magnetic wall.

ey

As long as the excess length / is much smaller than the
wavelength (or 8/ << 1), the inductance or capacitance
of the branch extension can be considered independent of
frequency, since tan 8/ = @/, yielding

Zol

c

L = for an electric wall, and

C= for a magnetic wall 2

2]

0

where the propagation velocity on the TLM mesh lines is
taken as c.
It is now possible to write the differential equations

0,1
Wt = L % for an electric wall, and
a3,V
dit = C % for a magnetic wall 3)

relating voltages and currents at the input of the reactive
stubs in terms of incident and reflected impulses, which
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Fig. 1. Extension of (a) short-, (b) open circuit, and (c) arbitrary reflecting
boundaries in a TLM mesh."

means that at each computational step we can write
Vi = &V + V', and

1 r i
ot = 2 W =, “)
(1]

and to replace these differential equations by difference
equations. This results in the following general recursive
formula .
: 1 —«
V' = v+
k | p 1+ ek

K .
T = (o V' + VY
where p = +1 for a magnetic wall and p = —1 for an
electric wall. « is equal to 2//Al in the 3-D TLM case,
and ~2I/Al in the 2-D TLM case. Equation (5) indicates
that the present impulse reflected from the boundary in
“the reference plane at Al/2 depends on the present inci-
dent impulse as well as on the previous incident and re-
flected impulses, which need to be stored. This recursive
algorithm amounts to a numerical procedure for integrat-
ing the differential equation describing the behavior of the
reactive stub in the time domain.

2.2 Stability of the Recursive algorithm

To guaranty an undisturbed simulation the algorithm
has to fulfill the requirement of stability. It can be stated
in general that negative values for the positioning param-
eter k are not allowed, since in that case the algorithm
would model negative inductances L and negative capac-
itances C for electric and magnetic walls, respectively.

In addition to this we have to demand stability for po-
sitive values of x, too. Therefore, we apply the Z-trans-
form to the recursive formula in (5) using the properties

Z{ach + bifs} = aZ{ufi} + bZ{ch} (Linearity) (6)
and
Z{_of} = 27"Z{.f} (Time Shifting) - (7)

which leads to the equation

. K 1 — « DK
Vil —z ' —— ] =,V +z7! :
k < z 1+K> kp<1+K Z~'1+K>

)]

Defining the transfer function (Fig. 2) between the inci-
dent voltage V'’ and the reflected voltage , V" to be

i

H(z)=z:j, )
we get
1 —« K
T e 1+«
Hz) = p— - (10)
| Z_1+K

- where we can apply stability criteria.

Stability for the case of a time discrete system means
that all roots of the denominator of the transfer function
H(2) have to be located inside the unit circle of the Gauss-
ian plane. Hence, it results that the algorithm is stable for
positive values of the positioning parameter . Therefore,
the positioning of the moving wall with k = 1 is possible
too, but exhibits a lack of information, since interconnec-

tions between the neighboring nodes are missing.

2.3 Boundary Extension by a Combination of a Reactive
Element and a Resistor

Assume now a general reflecting wall to be positioned
at a distance Al/2 + [ from the node as shown in Fig.
1(c), where [ is once again an arbitrary shift in the bound-
ary position beyond the standard distance Al/2.

Since the termination Z_ can be either larger or smaller
than the characteristic impedance Z, of the TLM mesh
lines, it is necessary to distinguish between two cases. In
both cases it is assumed that the excess length is much
smaller than the wavelength, and therefore,

Bl << 1 = tan Bl = (I (11)
and

Bl << 1 — tan® Bl = 0. (12)

Furthermore, let us define the ratio of impedances to be

Z

r=—
Zy

- (13)

and the positioning parameter k as done earlier.
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Fig. 2. (a) Definition of the transfer function between the incident and re-

flected voltages, and (b) the representation of the recursive formula as in
(5) by a digital filter.

Moreover, the normalized input impedance z, of the line
connected to the reference plane can be found to be

r + jtan S/

- 1 + jrtan 8l 14

Z

in general.

Case l: r <1

In this case the behavior of the connected piece of line
can approximately be described by a series connection of
a resistor R, and an inductance L; with

R = rZ, (15)
and
L~ (1 -r? Ll (16)
“Replacing the differential equation
Vot = Ri il + Ly d:}fmt (17)

by a difference equation using the relations between total,
incident and reflected waves the recursive formula
r+e(l-r) -1
r+e(l—rh+ 1t
' k(1 — r?)
r4k( =%+ 1

r

=

G V= VD) (18)

can be obtained.
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Case2: r > 1

Now the behavior of the connected line can approxi-
mately be described by a shunt connection of a resistor R,
and a capacitance C; with

R, = rZ, 19)
and
1Y\ [
Ci=|{1l——5)=". 20
1 < r2> ZOC ( )
Also replacing the differential equation
1 d k Vtot
et = = Vit + G , 2
iloe = 7 Vo o 21)

by a difference equation using once again the relations
between total, incident and reflected waves the evaluation
gives the recursive formula

1 1
+x(1-—=) -1
(-7

, P
yi= — 4
k T ] k
St (1= 5] +1
r r
1
1__
+1 N G V' + VD
w-|-K<1——2 + 1
r ¥

(22)

Testing the recursion formulas in (18) and (22) for spe-
cial cases should demonstrate their physical sensefulness
in general. Therefore, the excess line is terminated by Z,
= 0 (r = 0, means electric wall) and Z, - o (r = oo,
means magnetic wall) leading to the same formulas as
given in (5) using p = —1 and p = 1, respectively.

2.4 Time Varying Extensions

To model such phenomena like Doppler effect in time
domain, it must be possible to move the boundaries dur-
ing the simulation. A recursive formula for this shall now
be derived on the example of the moving electric wall.
Hence, the voltage reflection coefficient is — 1, which can
be represented by a short circuit. As shown above, this
short circuit extension can be described by an inductance
as long as we can assume that the extension is much
smaller than the wavelength. For a time varying extension
we have to distinguish between two cases once again.
Therefore, it is necessary to know, if the varying in time
is fast or slow.

In general, we have to solve the differential equation

v = QL0

ot a ¢
in the time discrete TLM environment. We apply once
again the identities for the total, incident and reflected

(23)
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values and replace the differential equation by a difference
equation. The incident voltage at the time step &k can then
be calculated by

i

kK Gk k) — 1
V=

ek + Gk — o) + 1

+ KX
KK + (kK - k~1K) + 1

GV = V).

24)

Now, the new incident voltage depends on actual and pre-
vious incident and reflected voltages as well as on the ac-
tual and previous wall position, which has additionally to
be stored for one time step. As long as the wall moves
slowly in time (24) can be reduced to

i kk 1
kK+1

K ,
£ (e—1 V' = VD, (25

k kK+1

where only the actual wall position is needed for the eval-
- uation.

HI. VERIFICATION OF RESULTS

The accuracy of the above algorithm has been validated
by performing extensive simulations of structures most
sensitive to small variations in the dimensions, namely
quarterwave and halfwave resonators as shown in Fig. 3.
One of the walls was made moveable by application of
(5), and 3-D TLM results obtained with the condensed
node scheme [2] for the resonant frequencies were com-
pared with accurate analytical values. Fig. 4 demonstrates
the results. Data obtained for higher order modes yield
information on the accuracy of the algorithm as a function
of the angle of incidence. It appears that the error margin
is largest for angles of incidence around 45 degrees.

The recursive formulas for arbitrary reflecting walls can
be proved by testing them for some special cases. It can
be shown that they yield the same equations as shown for
simple reflection walls.

Since the positioning parameter x can be changed after
each computational step by an arbitrary small amount, it
becomes feasible to model effectively boundaries that
move at arbitrary speed during a simulation. For example,
if k is programmed to increase linearly in time, the bound-
ary appears to be moving at a constant speed away from

its initial position. This allows us to model directly the

Doppler shift in the time domain. Fig. 5 shows the effect
of wall movement on the shape and delay of a Gaussian
_impulse as modeled with 2D TLM. Two identical impul-
ses of amplitude +1 have been reflected by electric walls
(voltage reflection coefficient —1) and are propagating to-
wards the left at velocity c. One of the reflecting walls
was stationary, and the other started to move away from
the source at constant speed v = 0.035¢ at the moment

of incidence. The delay, the widening and the amplitude:

reduction due to the wall movement are clearly notice-
able. The TLM results correspond exactly to theoretical
predictions and other numerical simulations [3].
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Fig. 3. Quarterwave resonator with. movable sidewall for validation of the
proposed algorithm.
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Fig. 4. Relative errors in resonant frequencies of the resonator shown in

Fig. 3 as a function of the angle of incidence for three different values of
the positioning parameter «.

TLM MODELING OF DOPPLER SHIFT
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Fig. 5. The influence of wall movement on the shape and delay of a Gauss-
ian impulse as modeled with 2-D TLM is shown. Two identical impulses
of amplitude +1 have been reflected by electric walls and are propagating
towards the left at velocity c.

IV. CoNcLUSION

The new technique presented in this paper removes ef-
fectively the restriction that dimensions of TLM models
can only be integer multiples of the mesh parameter. It
thus considerably improves the flexibility of TLM mod-
eling of microwave/millimeter-wave/optical components
by freeing the modeler from the ‘‘Manhattan-style’’ ap-
proximation of curved boundaries and by improving the
geometrical resolution without increase the computational
expenditure. Since the position parameter k (k =
V2I/Al for 2D TLM and « = 21/Al for 3-D SCN TLM)
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can varied in arbitrarily small increments between com-
putational steps, this feature can be used to model moving
boundaries and allows optimization in the time domain by
modification of structure geometry during a simulation.
Also, the direct visualization of phenomena such as the
Doppler effect becomes feasible.
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